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Abstract—An analytical-numerical method is presented for the postbuckling analysis of prismatic
plate structures that may be idealized as an assemblage of laminated, rectangular, plate-strips and
beams. The formulations are based on the classical laminated plate theory and include a number
of refined features. The analysis uses a deflection-type perturbation technique to determine the
buckling loads and the postbuckling equilibrium paths. A computer program has been developed
and is used to examine the postbuckling behavior of perfect and imperfect blade stiffened panels,
with and without longitudinal, transverse or orthogonal beam stiffeners.

NOTATION

The following is a list of the main symbols used. Other symbols are explained when they are first introduced.

B, B, width of entire stiffened panel and plate element (i = 1,2,...)

b,b, width of stiffener

d,, d, distance between centers of stiffeners

E\E, elastic moduli for a composite layer

E A, EA, extensional rigidity of stiffeners in the longitudinal and transverse directions
e, e, stiffener eccentricity

FF dimensional and nondimensional form of stress function

G, shear modulus for a composite layer

G,J,,GyJ; torsional rigidity of stiffener cross-section

hy,h,y height of stiffener

1,1, moment of inertia of stiffener cross-section about its centroidal axis

L length of the entire stiffened panel

n, 1, number of stiffeners in the longitudinal and transverse directions

t; thickness of rectangular plate element (i = 1,2,...)

W, W dimensional and nondimensional form of additional deflection of plate element
W, w* dimensional and nondimensional form of geometrical imperfection of plate element
B aspect ratio of plate element

€ a small perturbation parameter

A A nondimensional form of load and stress

u imperfection parameter

V92 Poisson’s ratio

Oy Tyy average axial stress and shear stress.

INTRODUCTION

Stiffened laminated panels are being used more and more extensively in aerospace structures.
These components are expected to achieve their ultimate loads in the postbuckling range.
Thus, the initial buckling and postbuckling behavior of stiffened laminated panels must be
well understood.

Many studies have been performed for stiffened composite panels under compressive
loading. Wittrick and Williams (1972, 1974) developed an accurate buckling analysis for
isotropic and anisotropic plate assemblies. Some linear classical buckling loads of stiffened
composite panels were obtained analytically by Chiu (1972) and Viswanathan et al. (1972,
1973a,b) and experimentally by Spier (1975), Williams and Stein (1976) and Romeo
(1986). A design procedure for stiffened composite panels was suggested by Dickson et al.
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(1980a, b). However, limited progress has been achieved in the methods of postbuckling
analysis of stiffened composite panels and only a limited amount of data has been published
that describes their postbuckling behavior. Smith (1985), Smith and Dow (1983), Starnes
et al. (1985) and Wiggenraad (1985) performed experimental studies of postbuckling
behavior of stiffened composite panels. Recently, Sheinman ez al. (1988) and Sheinman
and Frostig (1988) developed an analytical-numerical procedure for the buckling and
postbuckling behavior of stiffened laminated panels. Moreover, several computer codes
(Anderson and Stroud, 1979 ; Stroud et al., 1984 ; Dawe and Peshkam, 1989, 1990 : Williams
et al., 1990 ; Bushnell, 1987) currently in use have the capability for buckling and post-
buckling analysis of stiffened composite panels. These codes are excellent. but in view of
the number of degrees of freedom involved are more expensive for parametric study or
preliminary design than is the method proposed here.

The present paper is concerned with the buckling and postbuckling of stiffened lami-
nated panels under compressive loading. Attention is confined here to structural com-
ponents that may, in general, be idealized as an assemblage of laminated plate-strips and
beam elements. The individual plate-strip is based on the classical laminated theory and
the elementary theory of bending and torsion is used for the beam elements. The initial
geometrical imperfections of the plate-strip are taken into account. As many researchers
have done, for simplicity the form of initial geometrical imperfection is taken as the buckling
mode of relevant plates.

A new approach for postbuckling analysis of isotropic and anisotropic plates has been
recently developed by Shen (1989, 1990) and Zhang and Shen (1991), using a deflection-
type perturbation technique. Shen and Williams (1993) extended this method to box-type
laminated plate assemblies. In contrast, the present study is directed specifically at the
postbuckling behavior of stiffened laminated panels. The theory presented is illustrated by
some numerical examples of perfect and imperfect blade-stiffened panels. Hence, the analysis
and the associated computer program are correlated with existing analytical and test results.

ANALYTICAL FORMULATION

Some of the basic equations from Shen and Williams (1993) are repeated here for
clarity, with the very minor changes included that are needed to make them applicable to
stiffened panels instead of boxes.

A thin stiffened laminated panel composed of a system of flat plates joined together
along their longitudinal edges, with and without interlinked beam stiffeners, is considered.
A cross-section is shown in Fig. 1. 1t is of length L and is loaded in compression. In
accordance with most previous theories, the beam stiffeners are averaged or “‘smeared out™
over the stiffener spacing, so that L = (n,+ 1)d,, where n, is the number of transverse
stiffeners. The n, longitudinal stiffeners of each main skin have spacing d,, eccentricity ¢,
height /#, and width b,. ¢,, h, and b, are defined analogously to e, #, and b, but are for
the transverse stiffeners. Generally, n,, n,, d,, d-. e, ¢5, b), bs, h, and h, can be different
for each longitudinal portion into which the plate stiffeners divide the skin.

As described in Shen and Williams (1993), the postbuckling analysis of such structures
should be performed by including the following essential features : couple the in-plane and
out-of-plane actions along the plate junctions; include the second-order term of in-plane
displacement ¥ in the end-shortening relationship of the panel; and consider the shear
stress along the plate junctions. As a result, the method presented here is different from the
classical approximations.

A typical laminated plate-strip forming the plate structures is shown in Fig. 2. U, v
and W are the displacements parallel to a right-hand set of axes (x, y.z) as shown. The
present analysis for each plate-strip is based on the classical laminated theory, and the
elementary theory of bending and torsion is used for the beam stiffeners. Denoting the
initial deflection by W*, let W be the additional deflection and let the stress function F be
such that
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Beam Flat plate-strip

Fig. 1. A typical stiffened laminated panel, showing longitudinal beam stiffeners, but with the
transverse stiffeners omitted for clarity.

Fig. 2. Laminated plate-strip configuration.
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N«\’ = Fv.,\‘\‘s Nr = F.\:w /Vx'y = ""F

LYY

then the nonlinear large deflection equations of laminated plates with longitudinal and/or
transverse beam-type stiffeners are given as follows:

LW+ Ly(F) = LW+ W+, F), ()
Ly(F)=Ly(W) = —L(W+2W* W), )
where
54 64 (14 64 24
L, = D% “a“‘“z +4D165 {3 +2(D¥%, +2D¥ }(?X:w(:\yz +4D§6 (’xéy’ + D%, P
4 64 ’;4 (f}d (;4
=A% o A% — B
LZ —A22ax4 2A266x3a +(2A)”+A66) 7 —,y? ZAT()(—)X ay’5 +ATI 6y4’
';4 (*:4 64
Ly =B 55 +(2B%— 3’51)&5‘& +(BYi+ BL, ~2B%) o X2yt
@“ ot
+QBY = BE) 555 +BY .
e @ 52 > @

ooyt Ak ay axdy T oyt et
in these equations, the membrane, coupling and flexural rigidities, including beam stiffener
stretching, bending and torsional stiffness, are included. [4}], [B}] and [D}] (i, j = 1,2,6)

are reduced stiffness matrices, defined as

A*=A"', B*=-A B, D*=D-BA"'B

and

[E A, /d, 0 0

A =[4,]+ 0 E,A,jd, 01
L0 0 0
nEgAle;f'dg 0 0

B = [Blj]+ 0 EzA 3(’3/613 01,
L 0 0 0
CE(I,+A4,eD)/d, 0

D = [D;]+ 0 Eo(I, + A,e3)/d, 0
L 0 0 (G J1/dy+Godsdo) /4

where E\A,, E A, G,J, and G,J, are the extensional and torsional rigidities of the beam
stiffeners in the longitudinal and transverse directions ; 7, and 7, are the moments of inertia
of the beam stiffener cross-sections about their centroidal axes; ¢, and e, refer to beam
stiffener eccentricities; and details of matrices [4,], [B;] and [D;] (i. j = 1,2,6) can be
found in Chia (1980) and other textbooks.

It is apparent from the expressions for A, B and D given above that stiffeners are
assumed to stiffen the panel only in the directions of their lengths, so that it is implied that
the values of b,/d, and b,/d, are not excessive. This implied approximation is shared by
most previous “‘smeared stiffener’” papers and so is not discussed further here.

The unit end-shortening relationship is
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o0
X 5dxdy

" LB,

1 (& (- 0°F *F *F W

= _LB'L J:) {[AT'a_yZJrATZa 2 A'66x 6y:| [BT[ ox?
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The corresponding boundary conditions are

x=0,L, W=V=0, (4a)
B,
J‘ Nx dy+o-xtiBi = 09 (4b)
0
B,
\[ ny dy—TxytiB,' = 0. (40)
0

Introducing nondimensional quantities and omitting the subscript /i when convenient :

X = ﬂX/L, y= EY/BD ﬁ = L/Bb (W*’ W, U, V) = (W*, W; Us I7)/4 DTID 2A11A22,
F= F/ D%, D%,, ys= —A%,/A%,, ye= L/n\4/ D%, D%, 4%, 4%,,
(Y11, Y12, 713) = (D¥g, DY, +2D%¢, D%)/ DYy, V|4=\/D’§2/DT1,

V21,722, V23) = (A%, AT+ A%6/2, AY6) /A%, V24 = \/A’fl/Agz,

(7305 Y315 7325 V335 Y34, V3115 V316)
= (B%,,2B%,— B%, B, + B%,—2B%, 2B%,— B%,, BY,, BY,, B%,)/\/ DY D%,A1, A%,

(j'm A’xy) = (Gx’ Txy)tiBi2/47t2\/ DTngb
d, = (A,/L)B}[4n*,/ D%, D%, 4%, 4%,

enables the nonlinear equations (1) and (2) to be written in the nondimensional form

Li(W)+7y14Ls(F) = y,,°L(W+ W*, F), &)
Ly(F)—y2Ls(W) = =3y, B L(W+2W* W), (6)

where

64 4 4 4

0 o* )
L = 64+ ?nﬂa oy +2y,,8° ax2 oy =53+ uh’ ﬁx63 V|4ﬂ4

64 a 64 4 64

L,= PR 2928 555 3% oy +2y,,8° 2% oy 57 — 2B’ % 0y a3+ )’24ﬂ4 s

4 4 4 4 4

0 )
L= Vio 53 +7’3lﬂm +?3252W +733ﬂ35x—ay7 +?3454W,

az 62 62 02 62 02
=87 laxdyaxdy oy oxt
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The unit end-shortening relationship becomes

t T o*F 0*F 0°F
Gom — N L :
X 4n‘_ﬁ2‘y24L J; {[y24ﬂ a 2 —Vs5As a 2 —72 3ﬁ 0‘_6)}}

O st s Sl (29
Y24 V311 %2 Y34 3y )Héﬁ— 77}} —4Y,4 F

A% <aW2 N awaW*dd .
o) Pla ) |77 oy o (X O

and the boundary conditions become

:0’7[, W= V_—‘O, (ga)

f B \»dv+4/ BP=0, (8b)
1T, OF

ﬁ AV‘dy+4Anﬁ =0. (8C)

Applying eqns (5)—(8), the postbuckling behavior of each plate-strip under combined
axial compression and shear force can be determined by the perturbation technique sug-
gested in Shen (1989, 1990) and Zhang and Shen (1991).

To construct an asymptotic solution for the laminated plate, the additional deflection
and stress functions in eqns (5) and (6) are both taken in the form of perturbation expansions
as

W(x,y,€) = Z ewi(x,p), Flx,p,e) =Y ¢ fi(x,p) (9)

j=0
and the first term of w;(x, y) is assumed to have the form
wi(x,y) = A sin mx sin n(y+kx).
The initial imperfection is assumed to have a similar form:
W*(x,y,¢e) = eA¥, sin mx sin n(y+kx) = eud\y sin mx sin n(y+kx), (10)

in which the imperfection parameter u = A%,/A4\Y
Substituting eqns (9) and (10) into eqns (5) and (6), by using a perturbation procedure,
the amplitudes in terms of w;(x,y) and f;(x,y) can be determined step by step, and the
asymptotic solutions are obtained as follows :
W = ¢[A\) sin mx sin n(y +kx)] +&*[A5 cos 2mx+ A cos 2n(y + kx)]
*[A%Y sin mx sin 3n(y+kx) + AY) sin 3mx sin n(y +kx)

+ DY) cos mx cos 3n(y+kx)+ DY) cos 3mx cos n(y+kx)]+ O(e*), (11)
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F= 3‘3}; —C®xy+e¢[BY sin mx sin n(y +kx)
y2
+C4Y cos mx cos n(y+kx)]+¢ [ B3 5 C3xy+ B3 cos 2mx

+ B3 cos 2n(y+kx)]+£3[B‘3’ sin mx sin n(y +kx)

+ B'Y sin mx sin 3n(y +kx)+ B} sin 3mx sin n(y +kx)
+ C%) cos mx cos n(y +kx) + C'3 cos mx cos 3n(y +kx)
+ C%) cos 3mx cos n(y+kx)]+ O(e*). (12)

As pointed out in Shen and Williams (1993), the solution of eqn (11) does not satisfy
the boundary condition of eqn (8a) exactly, because prebuckling deformations are ignored.

Note that in eqns (11) and (12), the coefficients are related and can all be written as
functions of 4%} [see Appendix II in Shen and Williams (1993)].

Substituting eqn (12) into boundary conditions (8b) and (8c) gives [where (%, i$?;
A0, 4250, 0,; and 67, 57 are given in detail in Shen and Williams (1993)]

A = 40+ 1P (AN + -, (13)
Ay = AD +A2(ANe) >+ -, (14)

in which (4{!)e) can be written as a function of the deflection of the plate. If the maximum
deflection is taken at the point (x, y) = (n/2m, n/2n—kn/2m), then

ANe =W, +(©,+O) W5+ . (15)
Using eqn (7), together with eqns (11) and (12), we have
8, = 80+ 62 (ANe)?+ - - -. (16)

Thus, treating k and (4{¢) as two unknown variables, there are three equations, (13),
(14) and (16), from which it is possible to determine the axial stress, shear stress and end-
shortening for each plate-strip.

Further, for postbuckling analysis of the entire panel, the compatibility conditions
require that

Y (r,); =0 (at common junction), an
i=1

(Ax/L)r = (Ax/L)i+ 1s (]8)

and the half-wave numbers in the longitudinal direction of all buckled plates are the same.
From the above conditions, together with the boundary conditions of longitudinal edges,
which are simply supported (U = W = 0) or free, the other unknown variables k; and
(A4e); i = 2,3,...) can be determined.

Rewriting eqn (13), the postbuckling equilibrium path of the stiffened panel can be
written as

A= T IAO+AP AN + -], (19)
i=1

This equation characterizes the postbuckling load—deflection curves of stiffened lami-
nated panels loaded in compression. The buckling load of perfect panels can also readily
be obtained numerically, by setting u = 0 (or W*/t = 0), while taking W,, = 0 (or W/t = 0).

SAS 30:12-C
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NUMERICAL EXAMPLES AND DISCUSSION

The buckling and postbuckling behavior of a stiffened laminated panel was investigated
analytically using a program developed for the purpose and many examples have been
solved numerically. Here attention is confined to blade stiffened laminated panels.

First, consideration is given to the initial buckling of a blade stiffened composite panel
and the results are compared with results in the literature. The overall geometry of the
blade stiffened panel and the stiffener and skin layup details are shown in Fig. 3. The panel
was considered as the third example of seven in 2 NASA report by Stroud er al. (1984).
All plies of the main skin and the stiffeners are graphite-epoxy with properties given as:
E, = 1310 GPa; F,, = 13.0 GPa; G, = 6.41 GPa; and v, = 0.38. Stroud et al. (1984}
quote their buckling results in terms of a load factor which is the factor by which the
prescribed prebuckling applied loads per unit width of panel, = 17513 N mm ', are
multiplied to cause initial buckling. The same load factor, designated £, is adopted here
when presenting and comparing the results obtained by using VIPASA (Wittrick and
Williams, 1974), BAVAMPAC (Peshkam and Dawe, 1988), EAL (Stroud et al., 1984) and
FEM (Tripathy and Rao, 1992), which are given in Table 1.

The second example deals with a blade stiffened carbon-epoxy panel with symmetrical
stiffeners and symmetrical (S) and nonsymmetrical (NS) skins. The cross-section and the
stiffener and skin layup details are shown in Fig. 4. The length of panel is, in turn,
either L = 1100 mm or L = 340 mm. The layer material properties are: £, = 1150 GPa:
E,, =7.1GPa;G,; =40GPa;v,, = 0.31; and thickness t,;, = 0.2 mm. The buckling load
and the end-shortening calculated are listed in Table 2, where they are compared with test
and analytical results given by Wiggenraad (1985). Clearly, the results obtained from the
present method accord quite well with the test results.

{a) {b}

o B ./
/ 7

FY 7 i Vv vy

©
o~
I~
w
< . 635 i 63.5
L T
T U }
<
[3
Vo]
.
—] ja—5.101
yvivvvy
f£f ¢ f 1174
Ny Plate and stiffener cross-section
L=B=762 mm, b=63.5 mm
{c) d)
45
-45 2.3363 -2
-45 bt ?2 0127 2.1745 -4 2.5505
45 1 8509’ 4 2.1325 2.3415
90 ' 0 1.9235 (%
o[ T1.0866/1:689] | 1.7145
Symmetric plate thickness layup details Symmetric stiffener thickness layup details

Fig. 3. Geometry and loading of a blade stiffened panel (Example 1).
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Table 1. Initial buckling of blade stiffened graphite-epoxy panel: values of load factor f

Boundary conditions
(longitudinal edges) VIPASAt BAVAMPAC] EAL§ FEM]| Present

U=W=0 9.97 9.97 10.076 11.81 10.64
free 9.24 9.49

+ VIPASA (Wittrick and Williams, 1974).

1 BAVAMPAC (Peshkam and Dawe, 1989).
§EAL (Stroud er al., 1984).

| FEM (Tripathy and Rao, 1992).

stiffener type a: [1/0,/3 45} symmetrical skin (S): [$45/0,/+45],
stiffener type b: [ 145/0,/145}, non-symmetrical skin (NS): [145/0,/t 45,

< 20 ] ) . "
= a b a I b a
i s NS s NS ) NS

! 330
Fig. 4. Geometry of a blade stiffened panel (Example 2).
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The third example concerns a graphite—epoxy open section stiffened by a blade type.
The data used here are from Sheinman and Frostig (1988}, as shown in Fig. 5. The length
of panel is taken to be L = 187.5 mm and material properties are: E,; = 131.0 GPa;
E,, =13.0 GPa; G,, = 6.41 GPa; and v,, = 0.38. The initial imperfection (for the skin

Table 2. Comparisons of initial buckling load and end-shortening of blade stiffened
carbon-epoxy panels

Wiggenraad (1985)
L
(mm) Experimental  Analytical Present
1100 Buckling load (kN) 87 89 87.63
End-shortening (mm) 1.86 1.86 196
340 Buckling load (kN) 100 102 100.08
End-shortening (mm} 0.70 0.64 0.69

stiffener: [+ 45/ % 45/0,,/ + 45/ + 45,
—s] je—86.01

skin:
[(+ 45/ % 45),/+45/0,/-45/( t 45/ + 45),1;

415

| ] N

' 57.2 ' 57.2
Fig. 5. Geometry of a blade stiffened panel (Example 3).

bt
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201 | _187.5mm

F

N (KN mm)

05 W‘/t:{ ?)(1) __ ____ Present
—--—— Sheinman

i i
0.0 10.0 20.0 30.0
W {mm)

Fig. 6. Load-deflection curves of stiffened panet (Example 3).

only) is taken to be W* = 0.335 mm, so that W*/t = 0.1. The authors’ analytical post-
buckling load—deflection curves are shown in Fig. 6 to compare well with that given by
Sheinman and Frostig (1988), when the initial skin imperfection is taken into account.

The good correlation between the authors’ results and the other results of Tables |
and 2 and Fig. 6 demonstrates the acceptable accuracy of the method presented.

Next, blade stiffened graphite-epoxy laminated panels with and without longitudinal,
transverse or orthogonal beam stiffeners are considered. The overall geometry of the
stiffened panel, the loading, the stiffener and skin layup details are shown in Fig. 7. The
length of the panel is taken to be L = 644.0 mm and material properties are: E,, = 131.0
GPa; E,, = 13.0 GPa; G, = 6.41 GPa; and v,, = 0.38. For convenience, when beam
stiffeners were added they had : the number of longitudinal beam stiffeners for each of the
two main skin portions (of width 140 mm in Fig. 7) was n, = 4; the number of transverse
beam stiffeners of each skin portion was n, = 22 ; the widths of the beam stiffeners were
b, = b, = 7.62 mm; the heights of the beam stiffeners were £, = s, = 12.7 mm; and the
beam stiffener material properties were E, = E, = 72.4 GPa and G, = G, = 27.4 GPa.

Analytical postbuckling load-deflection curves for the perfect and imperfect blade
stiffened panel without the beam stiffeners are plotied in Fig. 8(a). Results with longitudinal
beam stiffeners are plotted in Fig. 8(b), results with transverse beam stiffeners are plotted
in Fig. 8(c) and results with orthogonal beam stiffeners are plotted in Fig. 8(d). It can be
seen that the stiffened panel with orthogonal beam stiffeners has the highest initial buckling
load and the highest postbuckling load. However, the curves for the perfect panels of Fig.
8 show that, for any permitted postbuckled deflection W/t, the percentage by which the
postbuckling load exceeds the initial buckling load is much higher for the panel with
tongitudinal beam stiffeners than for the panels with no beam stiffeners or with orthogonal
beam stiffeners, and is virtually nonexistent for the panel with transverse beam stiffeners.
This pattern of postbuckling behavior is largely mirrored by the imperfect results. Thus the
postbuckling behavior is by far the most favorable for the panel with longitudinal beam
stiffeners and has significant benefits for the panels with no beam stiffeners or with orthog-
onal ones. However, it is unfavorable for the panel with transverse stiffeners, such that the
maximum load achieved is about 87% of the initial buckling load at about W = and
decreases slightly as W increases beyond this, so that the panel is sensitive to initial
imperfections. Comparison of Figs 8(a) with 8(c), and 8(b) with 8(d), shows that the
addition of transverse beam stiffeners always increases the initial buckling and postbuckling
loads, but with the percentage increase of the former considerably higher than for the latter.
so that the addition of the transverse beams has led to less favorable postbuckling behavior.
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(a) A stiffened panel y B ,
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{b} Cross-section (without beam stiffeners)

stiffener: [*45/145/0,/* 45/5 45);
skin: [{ 145/ 45),/+45/0,/-45/(45/% 45), ),

g —{f—s6.02
| | [
L 28—z ’

336

(c). Longitudinal beam stiffeners

h__——I 28

140

- |~—T12.7
L'E___J

(d) Transverse beam stiffeners

—

Fig. 7. Geometry and loading of a blade stiffened panel (Example 4).
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{(a} Without beam stiffeners {b)} With longitudinal beam stiffeners
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Fig. 8. Load—deflection curves of stiffened panels.

CONCLUSIONS

The postbuckling analysis and an analytical-numerical procedure have been presented
for stiffened laminated panels. A number of examples have been given to illustrate their
applications, which relate to the performance of perfect and imperfect blade stiffened
laminated panels with and without beam stiffeners. Numerical correlation with existing
analysis and test data is reasonably good.

The solution methodology is general in nature and suitable for : (1) any type of stiffened
panels with and without beam stiffeners, subject to the usual limitations of “smeared
stiffener” theory; (2) arbitrary stacking combination and orientation of the laminates in

the panel skin and stiffener components; (3) any imperfection geometry and ; (4) initial
buckling as well as postbuckling analysis.
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